Synthesis of an arrayed sgRNA library targeting the human genome

نویسندگان

  • Tobias Schmidt
  • Jonathan L. Schmid-Burgk
  • Veit Hornung
چکیده

Clustered regularly interspaced short palindromic repeats (CRISPR) in conjunction with CRISPR-associated proteins (Cas) can be employed to introduce double stand breaks into mammalian genomes at user-defined loci. The endonuclease activity of the Cas complex can be targeted to a specific genomic region using a single guide RNA (sgRNA). We developed a ligation-independent cloning (LIC) assembly method for efficient and bias-free generation of large sgRNA libraries. Using this system, we performed an iterative shotgun cloning approach to generate an arrayed sgRNA library that targets one critical exon of almost every protein-coding human gene. An orthogonal mixing and deconvolution approach was used to obtain 19,506 unique sequence-validated sgRNAs (91.4% coverage). As tested in HEK 293T cells, constructs of this library have a median genome editing activity of 54.6% and employing sgRNAs of this library to generate knockout cells was successful for 19 out of 19 genes tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays

The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particul...

متن کامل

CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection

Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome...

متن کامل

A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen

To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utili...

متن کامل

High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupl...

متن کامل

Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure

The clustered regularly interspaced short palindromic repeats (CRISPR) system has recently been developed into a powerful genome-editing technology, as it requires only two key components (Cas9 protein and sgRNA) to function and further enables multiplex genome targeting and homology-directed repair (HDR) based precise genome editing in a wide variety of organisms. Here, we report a novel and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015